Learn how to manage credentials (API keys) in TensorZero.
Model Provider | Default Credential |
---|---|
Anthropic | ANTHROPIC_API_KEY |
AWS Bedrock | Uses AWS SDK credentials |
AWS SageMaker | Uses AWS SDK credentials |
Azure | AZURE_OPENAI_API_KEY |
Deepseek | DEEPSEEK_API_KEY |
Fireworks | FIREWORKS_API_KEY |
GCP Vertex AI (Anthropic) | GCP_VERTEX_CREDENTIALS_PATH |
GCP Vertex AI (Gemini) | GCP_VERTEX_CREDENTIALS_PATH |
Google AI Studio (Gemini) | GOOGLE_API_KEY |
Groq | GROQ_API_KEY |
Hyperbolic | HYPERBOLIC_API_KEY |
Mistral | MISTRAL_API_KEY |
OpenAI | OPENAI_API_KEY |
OpenAI-Compatible | OPENAI_API_KEY |
OpenRouter | OPENROUTER_API_KEY |
SGLang | SGLANG_API_KEY |
Text Generation Inference (TGI) | None |
Together | TOGETHER_API_KEY |
vLLM | None |
XAI | XAI_API_KEY |
api_key_location
) for more information on the different ways to configure credentials for each provider.
Also see the relevant provider guides for more information on how to configure credentials for each provider.
api_key_location
to env::MY_OTHER_OPENAI_API_KEY
.
MY_OTHER_OPENAI_API_KEY
environment variable and use that value for the API key.
OPENAI_API_KEY_1
and OPENAI_API_KEY_2
.dynamic::
prefix in the relevant credential field in the provider configuration.
For example, let’s say we want to provide dynamic API keys for the OpenAI provider.
credentials
argument.